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EXISTENCE OF GLOBAL SOLUTIONS FOR A SYSTEM OF
REACTION-DIFFUSION EQUATIONS WITH EXPONENTIAL
NONLINEARITY

EL HACHEMI DADDIOUAISSA

ABSTRACT. We consider the question of global existence and uniform bound-
edness of nonnegative solutions of a system of reaction-diffusion equations with
exponential nonlinearity using Lyapunov function techniques.

1. INTRODUCTION

In this paper we consider the following reaction—diffusion system

%_aAuzﬂ—f(u,v)—au (x,t) € QX Ry (1.1)
% — bAv = f(u,’l}) — O'H(U) (.’L',t) €0 x R+ (12)
with the boundary conditions
ou Ov
6_77:6_77:0 OH@QXRJF, (13)

and the initial data
w(0,2) = up(x) > 0; v(0,2) =vo(x) >0 in Q, (1.4)

where €2 is a smooth open bounded domain in R", with boundary 92 of class C*
and n is the outer normal to 9€2. The constants of diffusion a, b are positive and such
that a # b and 11, o, o are positive constants, k and f are nonnegative functions of
class C1(R;) and C'(R4 x Ry) respectively.

The reaction-diffusion system (1.1) — (1.4) arises in the study of physical, chem-
ical, and various biological processes including population dynamics (especially
AIDS, see C. Castillo-Chavez et al. [3], for further details see [5, 7, 12, 16, 17]).

The case I = 0, « = 0,0 = 0 and f(u,v) = h(u)T(v), with h(u) = u (for sim-
plicity), has been studied by many authors. Alikakos [1] established the existence
of global solutions when T'(v) < C(1 + |v|("*+2)/"). Then Massuda [13] obtained a
positive result for the case T'(v) < C(1 + |v|*) with arbitrary o > 0. The ques-
tion when T'(v) = eo‘”ﬁ, 0 < B <1, a>0 was positively answered by Haraux and
Youkana [9], using Lyapunov function techniques, see also Barabanova [2] for § = 1,
with some conditions and later on by Kanel and Kirane [11], using useful properties
inherent to the Green function. The idea behind the Lyapunov functional stems
from Zelenyak’s article [18], which has also been used by Crandall et al. [4] for
other purposes.

The goal of this work is to generalize the existing results of L. Melkemi et al. [14],
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where they established the existence of global solutions, when f(&,7) < ¥(&)e(T)
such that
In(1
i A+ e(7))

T—+00 T

=0.

Hence, the main purpose of this paper is to give a positive answer, concerning
the global existence and the uniform boundedness in time, of solutions of system
(1.1) — (1.4), with exponential nonlinearity, such that f satisfies

(A1) V7 >0, f(0,7) =0,

(A2) ¥ >0, V7 >0,0 < f(£,7) < p(€)(7 +1)*e'™,

(A3) k(1) =7, n=1,
where 7, A are positive constants, such that A > 1, ¢ is a nonnegative function of
class C(R™).

Our aim in this work, is to establish the global existence of solutions of (1.1) —(1.4),
with exponential nonlinearity expressed by the condition (A2), for arbitrary vy and
ug satisfying

62 8ab
2—-0 rn(a—b)?’
where 6 < 1 is a positive real number very close to 1.
For this end we use comparison principle and Lyapunov function techniques.

(1.5)

II
max( Il wo | oos E) <

2. EXISTENCE OF LOCAL SOLUTIONS

The usual norms in spaces LP(£2), L>=(Q2) and C(f2) are respectively denoted by

1
=t [ 1w 1P de, o= ma o) |

Concerning a local existence, we can conclude directly from the theory of abstract
semilinear equations (see A. Friedman [6], D. Henry [10], A. Pazy [15]), that for
nonnegative functions ug and vy in L>°(2), there exists a unique local nonnegative
solution (u,v) of system (1.1) — (1.4) in C(Q) on ]0, T*[, where T* is the eventual
blowing-up time.

3. EXISTENCE OF GLOBAL SOLUTIONS

Using the comparison principle, one obtains
I
0 < wu(t,z) < max(|| ug ||oos —), (3.1)
e

from which it remains to establish the uniform boundedness of v.
According to the results of [8], it is enough to show that

I f(u,0) —or(v) [p< C (3.2)

(where C' is a nonnegative constant independent of ¢) for some p > 3.
The main result of this paper is

Theorem 3.1. Under the assumptions (A1) — (A3) and (1.5), the solutions of
(1.1) — (1.4) are global and uniformly bounded on [0, +0o0].
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Let be w, 3,y and M positive constants such that w > 1,

) _ B+1)(2-0)Mr
6—9((171))2, W—max()\,,u, 3001 =) ) (3.3)
and )
II 0 8ab
M= — . 4
maX(H 4o Hoo’oz) < 2—60 rn(a—0)? (3-4)
We can choose )
0 4ab
p (3.5)

- 2—0(a—b)2Mr
as consequence of (3.4), we observe that p > 7.
The key result needed to prove the theorem 3.1 is the following

Proposition 3.2. Assume that (A1) — (A3) hold and let (u,v) be a solution of
(1.1) — (1.4) on |0, T*[, with arbitrary vo and ug satisfying (1.5). Let

RAQ@me+é<6j%%Fjﬁﬁw+@wwmw. (3.6)

Then, there exist p > n/2 and positive constants s and T' such that

dR
L < sy 4T (3.7)

It’s very important to state a number of lemmas, before proving this proposition.

Lemma 3.3. If (u,v) is a solution of (1.1) — (1.4) then
d
/ Flu, v)da <TI0 — —/ u(t, 2)da. (3.8)

Q dt Jo

Proof. We integrate both sides of (1.1),
d

flu,v) =11 — au — Eu(t, x) — alAu

satisfied by u, which is positive and then we find (3.8). O

Lemma 3.4. Let be ¢ a nonnegative function of class C(RY), such that
lim _7,/1(7) =
T—+oo T 4+ w
and let A be positive constant. Then there exists N1 > 0, such that

[ﬂ—z — AJ(7 +w) e f(€,7) < N1f(E,T), (3.9)

forall0 < &< M and T > 0.

Proof. Since

im Y0
T—+00 T + w

there exists 79 > 0, such that for all 0 < ¢ < K, 7 > 79, we have

)

T4+ w

)

— Al(T 4+ w)PeP"T f(E, 1) < 0.
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Now if 7 is in the compact interval [0, 79, then the continuous function
X(&7) = [p(r)(7 +w)P7h = A(T + w) 7]eP"T
is bounded. g

Lemma 3.5. For all 7 > 0 we have
II
[7(1 g)M - UpH(T)(—l + )T + w)PeP"T < —s(7 +w)PeP"T 4+ By, (3.10)
— T+w
where By and s are positive constants.

Proof. Let us put
13

&= (1-0)M

+ s

_1B
(1-0)M
II
(g — )+ oo+ (i = o s+ oyrer,
then, using Lemma 3.4 we can conclude the result. (I

(r 4+ )PP — opr(T) (T + )P (W) =

Proof. (of Proposition 3.2)

Let
(MY
T=\e-oM—u)
so that
R,(t) = p/Q udz + G(t),
where

G(t) = /Qg(u)(v + w)"PeP dz.

Differentiating G with respect to ¢t and a simple use of Green’s formula gives

G't)=1I+J,
where
I= —a/ g’ (w)(v + w)PeP™ | Vu|*dx
Q
—(a+D) / g (W) [yp(v + W)~ + pr(v + w) PP VuVudz
Q
- b/ gwp(yp = 1) (v +w)P72 4+ 29pr(v +w) P+ P (v + w) Pl Vo P da,
Q
J = / g (u)(v + w)PeP ™ dx — / ag' (u)u(v + w)PeP ™V dx
Q Q

+ /Q (g(u) [vp(v 4+ w)"™P~! + rp(v + w) ] — ¢’ (u) (v + w)”p> fu,v)eP™dx

- / olyp(v + )P 4 rp(v + w)](v)g(w)e Vd.
Q
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We can see that I involves a quadratic form with respect to Vu and Vv, which is
nonnegative if

5= (pla+b)g W) +w) ! +r(v+w)?)’
— dabyp(yp — 1)g" (w)g(u) (v + w)*P~?
— dabg” (u)g(u)(v + W) P [2yp*r(v 4+ w) P + p?r? (v + w)P] < 0.

Indeed
5= [(p)*(a+b)28> — 4abB(B+ )py(py — 1)] g((é)(z;;;\;z)zz);

rp*g(u)*(v +w) !
(2 =0)M —u)?

+ [(a + b)26% — 4abB(B + 1)]

27 +r(v+w)l,

the choice of 3 and ~ gives

5 [+ 1-py(1 — oy Rl b

(@—0)M —up
+ dab(f — 1)”’5(?2(“) ;;AIML:; 2+ (rp)(v + w)] <0,
it follows that
1<0.

Concerning the second term J, we can observe that

J < /Q (% — apm(v)[v 1 -+ r])g(u)(v + w)PV e dx

w [ (P 11 g ) o)+ ) e

U+ w

Using Lemma 3.5, we get

J < /Q[—s(v + w)PeP™ + Bylg(u)dx

-i-/Q (p[ 7 +7] — %ﬁ)ﬂu,v)g(u)(v + w)PePdx,

V4w
or

J < /Q[—s(v + w)P'eP™ + Bylg(u)dx

Py (1 —6)  4dab S
+/sz<v+w 20 (a—b)2M>f(“’“)9(“)(“+w) d

62 4ab o
+/Q <p7’ - mm) flu,v)g(u)(v+w) e’ da.
From Lemma 3.4 and formula (3.5), it follows

J < / [—s(v 4 w)PYeP™ + Bq]g(u)dx
Q

+N1 | f(u,v)g(u)dz.
Q
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In addition

then

1 B B
J < =sGt)+|Q| B (ﬁ) +N1(ﬁ) Qf(u,v)dac.

Then if we put
1 B
B=B|Q||——

B
1
=Ni|—— ] .
P 1(19)

d
u(t,z)dx + B+ pIl | Q | —pE/ u(t, z)dx
Q

and

Then, if we use Lemma 3.3,

J < —st(t)—l—sp/
Q

d
< —sR,(t)+[sM+1p | Q| +B - p%/ u(t, z)dz,
Q

it follows that iR
d—tp S _SRP + F,
where I' = [sM +1]p | Q| +B. O

Proof. (of Theorem 3.1)
Multiplying (3.7) by e and integrating the inequality, it implies the existence of a
positive constant C' > 0 independent of ¢ such that

R,(t) < C.
Since .
> (——)\p
o) > (515)°,
/ (v+w)PePdr < (2-0)°R,(t)
Q
< C(2-0)°.
Since w > 1 and (3.3) we have also,

/ (v + 1) PePmdg < / (v + w)PePde < C(2 - 0)P,
Q Q

/ vHPdr < /(’U + w)"Pdx < C(2 — 9)5.
Q Q
We put

A= max ¢(¢),

0<g<M
according to (A1) — (A3), we have

/ Flu,v)Pda < / AP (v + 1)PeP ™ dy < APC(2 — 0)° = APHP,
Q Q
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we conclude

1f (u,0) = ok (0)llp < 1 (u, 0)[lp + llor(o)ll, < H(A+ o).

By the preliminary remarks (introduction of section 3), we conclude that the solu-
tion of (1.1) — (1.4) is global and uniformly bounded on [0, +-00[x 2.

O
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