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EXISTENCE OF GLOBAL SOLUTIONS FOR A SYSTEM OF

REACTION-DIFFUSION EQUATIONS WITH EXPONENTIAL

NONLINEARITY

EL HACHEMI DADDIOUAISSA

Abstract. We consider the question of global existence and uniform bound-
edness of nonnegative solutions of a system of reaction-diffusion equations with
exponential nonlinearity using Lyapunov function techniques.

1. Introduction

In this paper we consider the following reaction−diffusion system

∂u

∂t
− a∆u = Π − f(u, v) − αu (x, t) ∈ Ω ×R+ (1.1)

∂v

∂t
− b∆v = f(u, v) − σκ(v) (x, t) ∈ Ω ×R+ (1.2)

with the boundary conditions

∂u

∂η
=
∂v

∂η
= 0 on ∂Ω ×R+, (1.3)

and the initial data

u(0, x) = u0(x) ≥ 0; v(0, x) = v0(x) ≥ 0 in Ω, (1.4)

where Ω is a smooth open bounded domain in Rn, with boundary ∂Ω of class C1

and η is the outer normal to ∂Ω. The constants of diffusion a, b are positive and such
that a 6= b and Π, α, σ are positive constants, κ and f are nonnegative functions of
class C1(R+) and C1(R+ ×R+) respectively.

The reaction-diffusion system (1.1)− (1.4) arises in the study of physical, chem-
ical, and various biological processes including population dynamics (especially
AIDS, see C. Castillo-Chavez et al. [3], for further details see [5, 7, 12, 16, 17]).

The case Π = 0, α = 0, σ = 0 and f(u, v) = h(u)T (v), with h(u) = u (for sim-
plicity), has been studied by many authors. Alikakos [1] established the existence
of global solutions when T (v) ≤ C(1 + |v|(n+2)/n). Then Massuda [13] obtained a
positive result for the case T (v) ≤ C(1 + |v|α) with arbitrary α > 0. The ques-

tion when T (v) = eαvβ

, 0 < β < 1, α > 0 was positively answered by Haraux and
Youkana [9], using Lyapunov function techniques, see also Barabanova [2] for β = 1,
with some conditions and later on by Kanel and Kirane [11], using useful properties
inherent to the Green function. The idea behind the Lyapunov functional stems
from Zelenyak’s article [18], which has also been used by Crandall et al. [4] for
other purposes.
The goal of this work is to generalize the existing results of L. Melkemi et al. [14],
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where they established the existence of global solutions, when f(ξ, τ) ≤ ψ(ξ)ϕ(τ)
such that

lim
τ→+∞

ln(1 + ϕ(τ))

τ
= 0.

Hence, the main purpose of this paper is to give a positive answer, concerning
the global existence and the uniform boundedness in time, of solutions of system
(1.1) − (1.4), with exponential nonlinearity, such that f satisfies

(A1) ∀τ ≥ 0, f(0, τ) = 0,
(A2) ∀ξ ≥ 0, ∀τ ≥ 0, 0 ≤ f(ξ, τ) ≤ ϕ(ξ)(τ + 1)λerτ ,
(A3) κ(τ) = τµ, µ ≥ 1,

where r, λ are positive constants, such that λ ≥ 1, ϕ is a nonnegative function of
class C(R+).
Our aim in this work, is to establish the global existence of solutions of (1.1)−(1.4),
with exponential nonlinearity expressed by the condition (A2), for arbitrary v0 and
u0 satisfying

max
(

‖ u0 ‖∞,
Π

α

)

<
θ2

2 − θ

8ab

rn(a− b)2
, (1.5)

where θ < 1 is a positive real number very close to 1.
For this end we use comparison principle and Lyapunov function techniques.

2. Existence of local solutions

The usual norms in spaces Lp(Ω), L∞(Ω) and C(Ω) are respectively denoted by

‖ u ‖p
p=

1

| Ω |

∫

Ω

| u(x) |p dx, ‖ u ‖∞= max
x∈Ω

| u(x) | .

Concerning a local existence, we can conclude directly from the theory of abstract
semilinear equations (see A. Friedman [6], D. Henry [10], A. Pazy [15]), that for
nonnegative functions u0 and v0 in L∞(Ω), there exists a unique local nonnegative
solution (u, v) of system (1.1) − (1.4) in C(Ω) on ]0, T ∗[, where T ∗ is the eventual
blowing-up time.

3. Existence of global solutions

Using the comparison principle, one obtains

0 ≤ u(t, x) ≤ max(‖ u0 ‖∞,
Π

α
), (3.1)

from which it remains to establish the uniform boundedness of v.
According to the results of [8], it is enough to show that

‖ f(u, v) − σκ(v) ‖p≤ C (3.2)

(where C is a nonnegative constant independent of t) for some p > n
2 .

The main result of this paper is

Theorem 3.1. Under the assumptions (A1) − (A3) and (1.5), the solutions of

(1.1) − (1.4) are global and uniformly bounded on [0,+∞[.
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Let be ω, β, γ and M positive constants such that ω ≥ 1,

β = θ
4ab

(a− b)2
, γ = max

(

λ, µ,
(β + 1)(2 − θ)Mr

βθ(1 − θ)

)

(3.3)

and

M = max
(

‖ u0 ‖∞,
Π

α

)

<
θ2

2 − θ

8ab

rn(a− b)2
. (3.4)

We can choose

p =
θ2

2 − θ

4ab

(a− b)2Mr
(3.5)

as consequence of (3.4), we observe that p > n
2 .

The key result needed to prove the theorem 3.1 is the following

Proposition 3.2. Assume that (A1) − (A3) hold and let (u, v) be a solution of

(1.1) − (1.4) on ]0, T ∗[, with arbitrary v0 and u0 satisfying (1.5). Let

Rρ(t) = ρ

∫

Ω

udx+

∫

Ω

(

M

(2 − θ)M − u

)β

(v + ω)γpeprvdx. (3.6)

Then, there exist p > n/2 and positive constants s and Γ such that

dRρ

dt
≤ −sRρ + Γ. (3.7)

It’s very important to state a number of lemmas, before proving this proposition.

Lemma 3.3. If (u, v) is a solution of (1.1) − (1.4) then
∫

Ω

f(u, v)dx ≤ Π|Ω| −
d

dt

∫

Ω

u(t, x)dx. (3.8)

Proof. We integrate both sides of (1.1),

f(u, v) = Π − αu−
d

dt
u(t, x) − a∆u

satisfied by u, which is positive and then we find (3.8). �

Lemma 3.4. Let be ψ a nonnegative function of class C(R+), such that

lim
τ→+∞

ψ(τ)

τ + ω
= 0

and let A be positive constant. Then there exists N1 > 0, such that

[
ψ(τ)

τ + ω
−A](τ + ω)γpeprτf(ξ, τ) ≤ N1f(ξ, τ), (3.9)

for all 0 ≤ ξ ≤M and τ ≥ 0.

Proof. Since

lim
τ→+∞

ψ(τ)

τ + ω
= 0,

there exists τ0 > 0, such that for all 0 ≤ ξ ≤ K, τ > τ0, we have

[
ψ(τ)

τ + ω
−A](τ + ω)γpeprτf(ξ, τ) ≤ 0.
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Now if τ is in the compact interval [0, τ0], then the continuous function

χ(ξ, τ) = [ψ(τ)(τ + ω)γp−1 −A(τ + ω)γp]eprτ

is bounded. �

Lemma 3.5. For all τ ≥ 0 we have

[
Πβ

(1 − θ)M
− σpκ(τ)(

γ

τ + ω
+ r)](τ + ω)γpeprτ ≤ −s(τ + ω)γpeprτ +B1, (3.10)

where B1 and s are positive constants.

Proof. Let us put

ξ =
Πβ

(1 − θ)M
+ s

Πβ

(1 − θ)M
(τ + ω)pγeprτ − σpκ(τ)[γ(τ + ω)γp−1 + r(τ + ω)γp]eprτ =

(

Πβ

(1 − θ)M
− ξ

)

(τ + ω)pγeprτ +

(

ξ

κ(τ)
− σrp

)

κ(τ)(τ + ω)γpeprτ ,

then, using Lemma 3.4 we can conclude the result. �

Proof. (of Proposition 3.2)
Let

g(u) =

(

M

(2 − θ)M − u

)β

,

so that

Rρ(t) = ρ

∫

Ω

udx+G(t),

where

G(t) =

∫

Ω

g(u)(v + ω)γpeprvdx.

Differentiating G with respect to t and a simple use of Green’s formula gives

G′(t) = I + J,

where

I = − a

∫

Ω

g′′(u)(v + ω)γpeprv|∇u|2dx

− (a+ b)

∫

Ω

g′(u)[γp(v + ω)γp−1 + pr(v + ω)γp]eprv∇u∇vdx

− b

∫

Ω

g(u)[γp(γp− 1)(v + ω)γp−2 + 2γp2r(v + ω)γp−1 + p2r2(v + ω)γp]eprv|∇v|2dx,

J =

∫

Ω

Πg′(u)(v + ω)γpeprvdx−

∫

Ω

αg′(u)u(v + ω)γpeprvdx

+

∫

Ω

(

g(u)
[

γp(v + ω)γp−1 + rp(v + ω)γp
]

− g′(u)(v + ω)γp

)

f(u, v)eprvdx

−

∫

Ω

σ[γp(v + ω)γp−1 + rp(v + ω)γp]κ(v)g(u)eprvdx.
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We can see that I involves a quadratic form with respect to ∇u and ∇v, which is
nonnegative if

δ =
(

p(a+ b)g′(u)[γ(v + ω)γp−1 + r(v + ω)γp]
)2

− 4abγp(γp− 1)g′′(u)g(u)(v + ω)2γp−2

− 4abg′′(u)g(u)(v + ω)γp[2γp2r(v + ω)γp−1 + p2r2(v + ω)γp] ≤ 0.

Indeed

δ = [(pγ)2(a+ b)2β2 − 4abβ(β + 1)pγ(pγ − 1)]
g(u)2(v + ω)2pγ−2

((2 − θ)M − u)2

+ [(a+ b)2β2 − 4abβ(β + 1)]
rp2g(u)2(v + ω)2pγ−1

((2 − θ)M − u)2
[2γ + r(v + ω)],

the choice of β and γ gives

δ ≤ [β + 1 − pγ(1 − θ)]
4abβpγg(u)2(v + ω)2pγ−2

((2 − θ)M − u)2

+ 4ab(θ − 1)
rpβg(u)2(v + ω)2pγ−1

((2 − θ)M − u)2
[2 + (rp)(v + ω)] ≤ 0,

it follows that
I ≤ 0.

Concerning the second term J , we can observe that

J ≤

∫

Ω

(

Πβ

(1 − θ)M
− σpκ(v)[

γ

v + ω
+ r]

)

g(u)(v + ω)pγeprvdx

+

∫

Ω

(

p[
γ

v + ω
+ r] −

β

(2 − θ)M − u

)

f(u, v)g(u)(v + ω)γpeprvdx.

Using Lemma 3.5, we get

J ≤

∫

Ω

[−s(v + ω)pγeprv +B1]g(u)dx

+

∫

Ω

(

p[
γ

v + ω
+ r] −

θ

2 − θ

4ab

(a− b)2M

)

f(u, v)g(u)(v + ω)γpeprvdx,

or

J ≤

∫

Ω

[−s(v + ω)pγeprv +B1]g(u)dx

+

∫

Ω

(

pγ

v + ω
−
θ(1 − θ)

2 − θ

4ab

(a− b)2M

)

f(u, v)g(u)(v + ω)γpeprvdx

+

∫

Ω

(

pr −
θ2

2 − θ

4ab

(a− b)2M

)

f(u, v)g(u)(v + ω)γpeprvdx.

From Lemma 3.4 and formula (3.5), it follows

J ≤

∫

Ω

[−s(v + ω)pγeprv +B1]g(u)dx

+N1

∫

Ω

f(u, v)g(u)dx.
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In addition

g(u) ≤

(

1

1 − θ

)β

,

then

J ≤ −sG(t)+ | Ω | B1

(

1

1 − θ

)β

+N1

(

1

1 − θ

)β ∫

Ω

f(u, v)dx.

Then if we put

B = B1 | Ω |

(

1

1 − θ

)β

and

ρ = N1

(

1

1 − θ

)β

.

Then, if we use Lemma 3.3,

J ≤ − sRρ(t) + sρ

∫

Ω

u(t, x)dx +B + ρΠ | Ω | −ρ
d

dt

∫

Ω

u(t, x)dx

≤ − sRρ(t) + [sM + Π]ρ | Ω | +B − ρ
d

dt

∫

Ω

u(t, x)dx,

it follows that
dRρ

dt
≤ −sRρ + Γ,

where Γ = [sM + Π]ρ | Ω | +B. �

Proof. (of Theorem 3.1)
Multiplying (3.7) by est and integrating the inequality, it implies the existence of a
positive constant C > 0 independent of t such that

Rρ(t) ≤ C.

Since

g(u) ≥ (
1

2 − θ
)β ,

∫

Ω

(v + ω)γpeprvdx ≤ (2 − θ)βRρ(t)

≤ C(2 − θ)β .

Since ω ≥ 1 and (3.3) we have also,
∫

Ω

(v + 1)λpeprvdx ≤

∫

Ω

(v + ω)γpeprvdx ≤ C(2 − θ)β ,

∫

Ω

vµpdx ≤

∫

Ω

(v + ω)γpdx ≤ C(2 − θ)β .

We put
A = max

0≤ξ≤M
ϕ(ξ),

according to (A1) − (A3), we have
∫

Ω

f(u, v)pdx ≤

∫

Ω

Ap(v + 1)λpeprvdx ≤ ApC(2 − θ)β = ApHp,
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we conclude

‖f(u, v) − σκ(v)‖p ≤ ‖f(u, v)‖p + ‖σκ(v)‖p ≤ H(A+ σ).

By the preliminary remarks (introduction of section 3), we conclude that the solu-
tion of (1.1) − (1.4) is global and uniformly bounded on [0,+∞[×Ω.

�
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